BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 48(12), 3763-3764 (1975)

Synthesis of (2-Chloroethyl)-nitrosourea Derivatives of Carbohydrate

Tomoya Machinami, Shigeru Nishiyama, Kazuo Kikuchi, and Tetsuo Suami*

Department of Applied Chemistry, Faculty of Engineering, Keio University, Hiyoshi, Yokohama 223

(Received June 7, 1975)

Synopsis. Six antileukemic carbohydrate derivatives which have a (2-chloroethyl)-nitrosoureido group have been prepared by a reaction between amino sugars and 2-chloroethyl isocyanate, followed by nitrosation.

It has been suggested by Johnston et al.1) that the replacement of a methyl group with a 2-chloroethyl group in numerous congeners of methyl-nitrosoureas increased antitumor activities against leukemia L1210, as was demonstrated with BCNU: 1,3-bis(2-chloroethyl)-1-nitrosourea and CCNU: 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea.1) More recently, two papers^{2,3)} have described a preparation of 2-chloroethyl analog of antitumor antibiotic streptozotocin.4) our laboratory, a synthesis of methyl glycoside of streptozotocin was initiated⁵⁾ and afterward, several nitrosourea derivatives of carbohydrate have been prepared by a reaction between amino sugars and alkyl isocyanate, followed by nitrosation. 6-8) In connection with the previous papers, we have attempted to prepare (2-chloroethyl)-nitrosourea derivatives, and in the present note, we wish to report a preparation of the derivatives of D-glycosylamines and polyhydroxycyclohexylamines by the analogous reaction sequence employed in the previous papers. 5-8) The position of the nitroso group in each compound has been established by PMR spectroscopy by demonstrating a spectral symmetry of the ClCH₂CH₂N(NO) group $(A_2B_2 \text{ system}).^{1)}$

All the six compounds showed a remarkable antitumor activity against L1210 leukemia in mice, which will be reported in a near future.

Experimental

Melting points were determined in a capillary tube in a liquid bath and are uncorrected. Solutions were evaporated under diminished pressure. Acetylation was carried out with acetic anhydride and pyridine in the usual manner. Optical rotations were measured on a Japan Spectroscopic

Table 1. 1-(2-Chloroethyl)ureas R-NH-C-NHCH $_2$ Cl

				_					
R	No.	Yield %	Mp °C	$[\alpha]_D^{\dagger}$	Molecular Formula	C % Calcd (Found)	H% Calcd (Found)	N% Calcd (Found)	Cl % Calcd (Found)
A. 1-(2-Chloroethyl)-3-((poly-C	-acetyl-	D -glycosyl)	ureas					
Tetra- O -acetyl- β - D -glucopyranosyl	1	88	154—155	−7 *	$C_{17}H_{25}N_2ClO_{10}$	45.09 (45.23)	5.56 (5.56)	$6.19 \\ (6.22)$	7.83 (7.85)
Tetra- O -acetyl- β - D -mannopyranosyl	8	80	140—141	-14*	$\mathrm{C_{17}H_{25}N_2ClO_{10}}$	45.09 (44.83)	5.56 (5.44)	6.19 (5.95)	7.83 (7.93)
B. 1-(2-Chloroethyl)-3-(p-	glycosy	l) urea	s and -3-(p	olyhydi	oxycyclohexyl) u	reas			
β -D-Glucopyranosyl	2	95	153 (dec)	-8	$C_9H_{17}N_2ClO_6$	$37.97 \\ (37.69)$	$6.02 \\ (5.82)$	$9.84 \\ (9.62)$	12.45 (12.20)
β-D-Galactopyranosyl	5	85	116 (dec)	+9.5	$\mathrm{C_9H_{17}N_2ClO_6}$	37.97 (37.86)	6.02 (6.18)	$9.84 \\ (9.57)$	12.45 (12.25)
β -D-Mannopyranosyl	9	78	158—159 (dec)	-34	$\mathrm{C_9H_{17}N_2ClO_6}$	37.97 (37.96)	$6.02 \\ (5.84)$	$9.84 \\ (9.81)$	$12.45 \\ (12.21)$
eta-D-Xylopyranosyl	12	47	159—160 (dec)	-13	$\mathrm{C_8H_{15}N_2ClO_5}$	37.73 (37.49)	$5.94 \\ (6.00)$	$ \begin{array}{c} 11.00 \\ (10.79) \end{array} $	13.92 (13.89)
1, 3/2N-Dihydroxycyclohexyl	15	66	125—127		$\mathrm{C_9H_{17}N_2ClO_3}$	45.67 (45.73)	7.24 (7.11)	11.83 (12.09)	14.98 (15.02)
1N, 3, 5/2, 4, 6-Pentahydroxy- cyclohexyl	18	90	195—197		$\mathrm{C_9H_{17}N_2ClO_6}$	37.97 (37.96)	$6.02 \\ (5.78)$	$9.84 \\ (9.76)$	$12.45 \\ (12.71)$

[†] Opitical rotations were measured at 14-30°C in water and chloroform(*).

Table 2. 1-(2-Chloroethyl)-1-nitrosoureas H₂Cl

R-NH-C-	N-CH ₂ CI
 O	
O I	VO

				0 110	•				
R	No.	Yield %	Mp °C	$[\alpha]_D^{\dagger}$	Molecular Formula	C % Calcd (Found)	H% Calcd (Found)	N% Calcd (Found)	Cl % Calcd (Found)
A. 1-(2-Chloroethyl)-3-(D-	glycosy	yl)-1-ni	trosoureas	and -3-	(polyhydroxycyclo	hexyl)-1-nit	trosoureas		
β -D-Glucopyranosyl	3	97	85 (dec)	-14		34.46 (34.36)	5.14 (5.09)	$13.40 \\ (13.20)$	11.30 (11.33)
β -D-Galactopyranosyl	6	64	145 (dec)	+13	$\mathrm{C_9H_{16}N_3ClO_7}$	$34.46 \\ (34.58)$	5.14 (5.09)	13.40 (13.12)	11.30 (11.22)
β - D- Mannopyranosyl	10	67	104 (dec)	-10	$\mathrm{C_9H_{16}N_3ClO_7}^{\dagger\dagger}$				
β -D-Xylopyranosyl	13	76	84—85 (dec)	-8	$\mathrm{C_8H_{14}N_3ClO_6}$	33.87 (34.17)	4.97 (5.10)	14.81 (14.44)	12.50 (12.80)
1, 3/2N-Dihydroxycyclohexyl	16	58	125—126 (dec)		$\mathrm{C_9H_{16}N_3ClO_4}$	40.68 (40.51)	$6.07 \\ (5.87)$	15.82 (15.70)	13.34 (13.13)
1N, 3, 5/2, 4, 6-Pentahydroxy- cyclohexyl	19	78	140—142 (dec)		$\mathrm{C_9H_{16}N_3ClO_7}$	34.46 (34.58)	5.14 (5.13)	13.40 (13.10)	11.30 (11.50)
B. 1-(2-Chloroethyl)-3-(po	ly- <i>0</i> -a	cetyl- D	-glycosyl)-1-	nitrosou	areas and -3-(poly	acetoxycyc	lohexyl)-1-n	itrosoureas	
Tetra- <i>O</i> -acetyl-β- D -glucopyra- nosyl	4	55	88—90	-14*	$\mathrm{C_{17}H_{24}N_{3}ClO_{11}}$	42.38 (42.55)	5.02 (5.06)	8.72 (8.44)	7.36 (7.44)
Tetra- O -acetyl- β - D -galactopyranosyl	7	76	69—70	+5*	$\mathrm{C_{17}H_{24}N_3ClO_{11}}$	42.38 (42.59)	$5.02 \\ (5.02)$	8.72 (8.61)	7.36 (7.38)
Tetra- O -acetyl- β - D -mannopyranosyl	11	87	78 (dec)	-20*	$\mathrm{C_{17}H_{24}N_3ClO_{11}}$	42.38 (42.68)	5.02 (5.05)	8.72 (8.47)	7.36 (7.50)
$Tri-O$ -acetyl- β - D -xylopyranosyl	14	40	124—125	-19*	$\mathrm{C_{14}H_{20}N_3ClO_9}$	41.03 (41.32)	4.92 (5.06)	$10.25 \\ (10.23)$	8.65 (8.80)
1, 3/2N-Diacetoxycyclohexyl	17	82	151—152		$\mathrm{C_{13}H_{20}N_{3}ClO_{9}}$	44.64 (44.52)	5.76 (5.74)	12.01 (11.81)	10.14 (10.09)
1N, 3, 5/2, 4, 6-Pentaacetoxy-cyclohexyl	20	85	206—209		$\mathrm{C_{19}H_{26}N_3ClO_{12}}$	43.56 (43.58)	5.00 (4.97)	8.02 (7.79)	6.77 (6.75)

[†] See, Table 1. †† Compound did not give a correct analysis.

DIP-SL polarimeter. Elementary analyses were performed by Mr. Saburo Nakada to whom our thanks are due.

General Procedure for 1-(2-Chloroethyl)-3-(D-glycopyranosyl) urea -3-(polyhydroxycyclohexyl)urea. O-Acetyl-D-glycosylamine or aminocyclitol was treated with 2-chloroethyl isocyanate (1.1—2.2 mol. equiv.) in a solvent. The reaction mixture was agitated for 1-2.5 hr under ice cooling and then evaporated. The residue was recrystallized from an appropriate solvent. The product was de-O-acetylated in methanolic ammonia or 0.1 M methanolic sodium methoxide.

General Procedure of Nitrosation. The carbamoyl derivative was treated with sodium nitrite (2 mol. equiv.) in 99% formic acid. After agitated for 1-2 hr under ice cooling, the solution was diluted with ice cold water and deionized with Amberlite IR-120(H+). The solution was evaporated or lyophilized to give the product.

Compound 1 was prepared from Starting Materials. 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylamine,9) compound 5 was from 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosylamine,9) and compound 8 was from 2,3,4,6-tetra-O-acetyl-β-D-mannopyranosylamine.8) Starting from 2,3,4-tri-O-acetyl-1-azido-1-deoxy- β -D-xylopyranose, 10) compound 12 was prepared. Compound 15 was synthesized from 1,3/2N-aminocyclohexanediol¹¹⁾ and compound 18 was from scyllo-inosamine.¹²⁾

- 2) T. P. Johnston, G. S. McCaleb, and J. A. Montgomery, ibid., 18, 104 (1975).
- 3) J. L. Montero and J. L. Imbach, Compt. Rend., 18, 809 (1974).
- 4) J. J. Vavra, C. Deboer, A. Dietz, L. J. Hanka, and W. T. Sokolski, Antibiot. Ann., 1959-1960, 230 (1960); W. T. Sokolski, J. J. Vavra, and L. J. Hanka, ibid., 1959-1960, 241 (1960); C. Lewis and A. R. Barbiers, ibid., 1959— 1960, 247 (1960); R. R. Herr, T. E. Ebler, M. E. Bergy, and H. K. Jahnke, ibid., 1959—1960, 236 (1960); R. R. Herr, H. K. Janke, and A. D. Argoudelis, J. Amer. Chem. Soc., 89, 4808 (1967).
- 5) T. Suami and T. Machinami, This Bulletin, 43, 3013 (1970).
- 6) T. Suami and T. Machinami, *ibid.*, **43**, 4505 (1570).
 7) T. Machinami and T. Suami, *ibid.*, **46**, 1013 (1973).
 8) T. Machinami, K. Kobayashi, Y. Hayakawa, and T. Suami, ibid., in press.
 - 9) A. Bertho and J. Maier, Ann. Chem., 498, 50 (1932).
- 10) A. Bertho, *ibid.*, **562**, 229 (1949).
- 11) F. W. Lichtenthaler, Chem. Ber., 96, 845 (1963); T. Suami and S. Ogawa, This Bulletin, 37, 194 (1964).
- 12) B. Bannister and A. D. Argoudelis, J. Amer. Chem. Soc., 85, 119 (1963); T. Suami, F. W. Lichtenthaler, and S. Ogawa, This Bulletin, 39, 170 (1966).

References

1) T. P. Johnston, G. S. McCaleb, P. S. Opliger, and J. A. Montgomery, J. Med. Chem., 9, 892 (1966).